
AD-Ai48 072 THE DESCRIPTION OF LARGE SYSTEIIS(U) MASSACHUSETTS INST i/i
OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB K PITMAN
SEP 84 AI-M-88i Ne68i4-88-C-8505

UNCLRSSIFIED F/G 9/2 NL

EEEEEEE~lE~llE
mIIhElllEE ll

I pllll

IN U

L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAUJ OF STANDARDS-1963-A

I1jjl

UNCLASSI FIED
S ECURITY CLASSIFICATION OF THIS PAGE (ften D te. Ene...EA4NS RU TI N

REPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
2GOVT ACESIO N0. 3-RECIPIENT'S CATALOG NUMBR

4. TI~fe~ Subltte)S. TYPE OF REPORT a PEMOD COVERED

* THE DESCRIPTION OF LARGE SYSTEMS
6 . PERFORMING ORGa. EaPOorT 4NMBER

7-AUlkhOR(es) S. CONTRACT OR GRANT MNMBER(e)

0KENT PIMA N0001480-C0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS tPoGR ELEMENT. PROJECT. TASK
4.Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

U 515 Technology Square
Cambridge, Massachusetts 02139

*It. CONTROLLING OFFICE NAME AND ADDRESS IS. REPORT DATE

I ~Advanced Research Projects Agency pehr14
14.00 Wilson Blvd I1. NU aRO PAGES
Arlington, Virginia 22209 33

04 MONITORING AGENCY NAME G AOORESS(It E*Meormni bu Centet*It Offie), IS. SE9CURITY CLASS. gl MIS mev.

Office of Naval Research UNCLASSIFIED
LInformation Systems ______________

Arlington, Virginia 22217 Is&. ICTO/0HRDN

IS. DISTRIOUTION STATEMENT (of this *a.-ue)

Distribution of this document Is unlimited.

17. DISTRIBUTION STATEMENT (.1 hte &"Iract uentoln 8005. IIS11111. WIU Ite e)

0
IS 1. SUPPLEMENTARY NOTES

%0

-J None EXT

19. KE WORDS (CalIfl n mes ieI 0400 We~iy ywe oak

Compilation
Large Systems
Lisp
System Maintetkance

t0. AUSTRACT (CmIInWf0USltevf did* Ut AeCS*OMY41d1167 p blub nmb..)

-n this paper, we discuss the problems associated with the description and
manipulation of large systems when their sources are not maintained as single
files. We show why and how tools that address these issues, such as Unix MAKE
and Lisp Machine DEFSYSTEM, have evolved.

* Existing formalisms suffer from the problem that their syntax is not easily
* separable from their functionality. In programming languages, standard

DD I j~mi 1473 EDITION OF 1 NOV SSIS5 OBSOLETE UNCLASS I FIED
SIR 02-14-0601SECURITY CLASSIFICATION OF TNIS PAGE (Wh ea EZ-S5 .

Block 20 continued

-wcalling conventions' exist to insulate the caller of a function from the
-J syntactic details of how that function was defined, but until now no such

conventions have existed to hide consumers of program systems from the
details of how those systems were specified.

We propose a low-level data abstraction which can support notations such
as those used by MAKE and DEFSYSTEM without requiring that the introduction
of a new notation be accompanied by a completely different set of tools
for instantiating or otherwise manipulating the resulting system.

Lisp is used for presentation, but the issues are not idiosyncratic to
Lisp.

Aocession For
NTIS GRA&I

DTIC TABUnannounced t-
~~Justification

: By .
q Dist ributi1on/

Availability Codes
Avail and/or

Dist Special

I'i

: 04

T

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

A.I. Memo No. 801 September. 1984

The Description of Large Systems
Kent Pitman

Abstrct
In this paper, we discuss the problems associated with the description and manipulation of large
systems when their sources are not maintained as single files. We show why and how tools that
address these issues, such as Unix MAKE and Lisp Machine DEFSYSTEM, have evolved.
Existing formalisms suffer from the problem that their syntax is not easily scparable from their
fuictionality. In programming languages, standard "calling conventions" exist to insulate the caller
of a fuinction from the syntactic details of how that finction was defined, but until now no such
conventions have existed to hide consumers of program systems from the details of how those
systems were specified.
We propose a low-level data abstraction which can support notations such as those used by MAKE
and DEF SYSTEM without requiring that the introduction of a new notation be accompanied by a
completely different set of tools for instantiating or otherwise manipulating the resulting system.
Lisp is used for presentation, but the issues are not idiosyncratic to Lisp.

Keywords: Compilation, Large Systems. Lisp. System Maintenance.

AI

* This relprt describes research done at the Artificial lntelligence Laboratory of the Massachusctts Institute
S*,r lechnology. Support for the Iaboratory's artilicial intelligence research has hcn proviled in part by the
Adv:,nced Rescarch I'ojecis Agency of' the Iepartment or i)Iwnse under llice: of Naal Research contract

* NtXJ)14-80-C-0505. in part by National Sciecem Foundatkn gnints MCS-7912179 and MC'S-8117633. and in
part by the IBM (orporation.

Ihe vicws and .onclimions containcd in this docunient arc those of the uitho. and should not be intcr)reted
as rcprcsnting the policies. expriesed or implied, of fh Department of l .lrens. oF the National Scicerm
l i" (HIlditon. or (or the I IM Corporation.

Ir M;s.i 'hmetts lastitilh cof'lcchioh~gy. 1934

I

1. Introduction

For reasons of modularity and editing convenience. the source code for large program systems is
rarely maintained as a single file. Instead, it is typically broken into a number of smaller files
which together makc up the system.

Since system tools such as editors, compilers, loaders and printers tend to be designed to deal with
files rather than systems, some extra mechanism is generally required in order to allow their users
to deal with systems that span multiple files. In the next section. we trace the evolution of tools
for system building. idcntirying the important issues that early tools sought to address.

We then present an overview of two system specification languages. Unix' MAKE and Lisp Machine
DE FSYSTEM, which illustrate the level of technology currently available to programmers for dealing
with these issues. Most criticisms which can be made about existing tools are at the syntactic level.
'llie tools address the right issues, but their syntax can be a stumbling block, inhibiting the
expression of certain kinds of relations and the ability to make extensions to the tools' original
functionality. It is not possible to vary the syntax without rewriting most or all of the underlying
support.
We conclude by proposing an organizational strategy which decouples syntax and functionality.
This makes it possible for a programmer to develop alternate system maintenance tools without
having to reimplemcnt every aspect of the original tools.

'ro make the discussion more concrete, we will give several examples of specification languages
that could be built under the proposed framework. However, it is important to understand that
the purpose of this paper is not to argue in favor of any particular notation. Rather, we wish
to illustrate that our proposed organizational strategy establishes an appropriate framework for
developing alternate notations such as these. As an appendix, we offer a sample implementation of
these specification languages in Lisp Machine Lisp in order to further clarify any issues left
vague by the examples used in the body of the paper.

1I. Background

There are a number of standard maintenance operations performed on systems. 'i'hese operations
include (but are not limited to) the creation of hardcopy listings, copying or renaming the files which
make up the source of the system, loading uncompiled source files (e.g., into a lisp interpreter),
and compiling changed source files.
For a system maintained as a single monolithic file, it is reasonably obvious how most of these
maintenance operations can be performed. Getting hardcopy of the system source is as simple as
getting hardcopy of any other file: compiling the system is as simple as compiling any single file.

For a more complex system, where the source spans more than one file, performning these operations
may be considerably more complicated. In that case, to get a listing, one must ask that each of
the source files be printed. "1"o com)ile the system, one must ask that each of the source files be
compiled and. in some cases, that the compilation occur in a certain order. To load the system
may be similarly complex due to another (not necessarily identical) set of ordering constraints.

A Need for Abstraction

It used to be that breaking a system into multiple files meant that one had to remember all the
names of the files and manipulate each as a separate object. Progranming environments had some
primilive understanding of files and operaions to be perfirmed upon files, hut had no explicit
understanding that groups of files could work together as a single unit.

'Imix is a Irodcmark of ill I abs.

It wa% common p~ractice then (and %till is today) to create batche files holding the coimmands;
necessary to accomplish it particular matnipulation. For example. the programmer might have kept
it fil containing code for compiling and loading a particular system and another file containing
code br hardcopying its sources:

:Batch sequence to compile/load system.
(LOAD (COMPILE-FILE -MACROS.LISP-))
(LOAD (COMPILE-FILE "UTILITY.LISP"))
(LOAD (COMPILE-FILE "MAIN.LISP"))

COMPILE -AND-LOAD-I4YSYS. LISP

;Batch sequence to hardcopy system sources.
(HARDCOPY-FILE -MACROS.LISP-)
(HARDCOPY-FILE "UTILITY.LISP-)
(HARDCOPY-FILE 'MAIN.LISP-).

HAROCOPY-MYSYS .LISP

Corntiion though it may have been to manipulate systems indirectly through such batch files it was
quite clumsy. It meant that any timec a change to the systcm was made, all the relevant batch files
had to be updated. If not updated carefully and conmpletely, thc batch files could easily bcome
inconsistent. leading to contising effects. Also, because information about the structure of a system
was procedurally embedded4, the only way a uitility could be written to apply a new operation to the
system was by creating yet another separately-maintained batch file.
Not surprisingly. pro~grammners have moved away from this batch method of maintainins their
systems and toward the notion that a system should be defined abstractly in some central place
and then manipulated as a unit rather than as a set of unrelated individual components (files).
A First Approximation

Here is a simple example of the sort of code needed to implement the kind of tool we are
discussing:

(DEFVAR *SOURCE-INFO* (MAKE-PLIST))

(DEFUN SYSTEM-SOURCES (SYSTEM) (GET *SOURCE-INFO* SYSTEM))

(DEFUN DEFINE-SYSTEM-SOURCES (SYSTEM &REST SOURCES)
(PUTPROP $SOURCE-INFO.(COPYLIST SOURCES) SYSTEM))

(DEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #'HARDCOPY-FILE (SYSTEM-SOURCES SYSTEM)))

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(MAPC #-(LAMBDA (FILE) (LOAD (COMPILE-FILE FIL.E)))

(SYSTEM-SOURCES SYSTEM)))

Giveni this level of suipport, a system would be "defined" by writing simply:
(DEFINE-SYSTEM-SOURCES 'MYSYSI "MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP-).

Once delined. such a system could he nmanipulated by requests such as these:
(IIAIDCOPY-SY~jffM 'MYSYS)

(CHI1P ILE -AJD-LOAD -SYSTEM 'MYSYS)

IAt

P'artial Ordering or I)ependencics
One problem with this formulation is that the relationship between the modules of' a system may
be quite complex. For example, some of the files in a system may not depend on other files and
the wholc systemn may not need to be recomnpiled just because onlC filec has changed. To try to
account for this, die definition of COMPILE-AND-LOAD-SYSTEM might be changed to read:

(DEFUN COMPILE-AND-LOAD-SYSTEM (SYSTEM)
(LET ((COMPILE-FLAG NIL))

(DOLIST (FILE (SYSTEM-SOURCES SYSTEM))
(SETQ COMPILE-FLAG

(OR COMPILE-FLAG (NEEDS-COMPILATION? FILE)))
(IF COMPILE-FLAG (COMPILE-FILE FILE))
(LOAD (BIN-FILE FILE))))).

With this revised definition, files in a system's source file list would have a left-to-right dependency
relation. Consider again the system defined by:

(DEFINE-SYSTEM-SOURCES -MYSYS
"MACROS.LISP" 'UTILITIES.LISP" "MAIN.LISP").

If MACROS. LISP is changed, UTILITIES. LISP and MAIN. LISP will have to be recompiled.
But if MAIN. L IS P is changed, it is the only file which will get recompiled.

Simple left-to-right dependency is usefuil for some applications, but may cause a lot of' unneeded
work in others. Thbe reason is that the actual ordering may only be partial, but a luill ordering is
rorced by this flotation.'
For example, it is easy to imagine our system being constructed so that if' the file MACROS. L ISP
changed, both u rILITIES. LISP and MAIN. LISP would need to be recompiled, but if just one
of UTILITIES. LISP or MAIN. LISP changed, only that one file would require recompilation.
Beccause this simple notation provides no way to adequately express such complex relations, it must
be judged inadequate to handle the "general case." Nevertheless, there are cases where it would
be adequate, and it would be nice to use it (or something equally simple) for those cases.
Orthogonal De-pendency Types
Another problem with our original rormulation concerns multiple, independent dependency chains.
I)ependency information for compilation might not be the samne as dependency information for
producing a runtime environment.
If' the only goal is to compile a system, there might be many files which do not need to be
loaded because they contain utilities used only at runtime. Alternatively, if the goal is to load an
alreamdy-compiled system, some files (for example. those containing only macros used at comipile
tinie) might not he necessary. If both compilation and loading are to be interleaved, a VJrd
ordering might arise.
An adequate notation for describing systems needs to offer a notation for stating different kinds
of dependency relations, and should probably be extensible (allowing the addition or new kinds or
dep~endencies).

"In gencrl. nlttimiIs niust hL chov with extreine care: an ill-chosen nlotation can haic a very aiverse
Cci (Pit specificamion:s 111.1 use it, nukiug thou~ seeim to imtply thinl:% which are in Ifit Lulse. Vor a imre
comuplle discuv,%ioII of mich Kstiges. sc Jlackinluy .-1.

111. Existing ToolsAN

lb.w Uni MAKE Facility
Thle Unix MAKE facility II~eldman 781 is frequently pointed to as a model of "the right way to
define a system.- It is syntactically simplc and provides a reasonable amount of power.
A maketf ie contains Unix shell commands augmented with iniformation about which code
modules depend on which others. Whcn the make command is invoked, it is as if all dhe
shell commands were executed except that some shell commands may be "optimized ouV" if the
dependency information specifies that they are not necessary to preserve correctness.
To make things concrete. here is a sample of how a system might be specified in a ma0kef ie:C

mysys: 8.0 b.o
cc a.o b.o -im -o pg.

a.o: incl a.c
cc -c aCC

b.o: inci b.c
cc -c b.c

The first line defines that there is some module called inysys which needs to be updated if a.* o
or b. .o are ever out of date. 'llie indented line following that line specifies how to do die update;
specifically, it links the compiled files a. o, b. .o, and standard library m. The third and fifth lines
define modules a.* o and b .o. saying that they depend on . C source files and also on somre file
called inci (which they presumably reference internally via #include).
To make comparison easier, we could pretend that MAKE used Lisp expressions rather than requiring
a special parser. In such case, a makef ie might contain an expression like:

(DEFINE-FOR-MAKE MYSYS
(MYSYS ("8.0" "b.o")

(LOAD-IF-NOT-LOADED ""
(LOAD-IF-NOT-LOADED -b-)
(LOAD-IF-NOT-LOADED"")

(1"a.o" (11ici" "a.c")
(COMPILE-FILE "a.c"))

("b.o" ("inci" "b.c")
(COMPILE-FILE -b.c-)))

One problem with MAKE is that not all the information in a makef ie is explicit. For example,
the fact that the system sources are i nc 1, a. c, b. c is nowhere explicit. libere is nothing (other
than hoping that .o files are not source files and anything else is) which identifies thcm as die
SOUrcc files. A programmcr wanting to write a utility for producing hardcopy of a system's sources
would not be able to drive the utility off of the information contained in the makef le.
MAKE otrers no theory of how to include or process additional information. [-or example, having
the tail of cach nioduic ckaise (the parn after the colon iii the originial Unix syntax) say how to
build the miodule is fine Rir ia comnpiled-only laniagc. hut is not reasonable init language like
lisp which embraces the iotion of an interpreter and it compiler that can share the load. 'lbcrc is
nit obvious way to extend MAKE in an upward-conipatible lashion in order to allow speification
of* commiands for compiling modules ats well as commands flor loading then. T[here is also no
provision for adding other kinds of inibrnal ion, such as an alternate notion of what it mens for
modules to he out of date or how to handle circular dependencies.
Ini ficr. MAKE amiounts to little more than a batch facility with at simple btut inflexible provisiont
fior ignoring unnecessary commands. Just as with nonnal batch files, to do two operations (e.&.
comipile muid load) requires two batch files. While it niiiglu be syntactically convenient lior so(me
4.0111111011 *mppl4icatuou% inl conipiled-only lagugsundcr Unix. MAK[ulucs not represem ita theory
or how to) imnim systemls.

4

'11wi DEFSYSTEM Facility
ICY 'lhc Lisp Machine DEFSYSTEM facility IWcinreh 811 bills itself as a "general and extensible" too~l

for maintaining systems broken into several files. It provides a means of noting what files belong
to what modules, what modules dcpcnd on what other modules (both for compilation and for
loading), and is extensible to allow the addition of new system-building -'transformations" (such as
calls ito alternate comnpilers and loaders).
lnfolion about the structure of a system is defined with the DEFSYSTEM special form. Later.
MAKE-SYSTEM can be called to perform a prc-deflncd set of operations upon the system.

4 Hecre is a sample system description written in DEFSYSTEM notation:
(DEFSYSTEM MYSYS

(:MODULE MACROS ("inci"))
A (:MODULE A ("a"))

(:OUL (b)

(:MODULE MLB (""))

(:FASLOAO NUIB)
(:COMPILE-LOAD MACROS)
(:COMPILE-LOAD-INIT A (MACROS)

(:FASLOAD MACROS)
(:FASLOAD MLIB))

(:COMPILE-LOAD-INIT B (MACROS)
(:FASLOAD MACROS)
(:FASLOAD NtIS A)))

The :MODULE 3 clauses specify which files belong to each of the modules. For example, the INCI
module refers to the file "incl .11sp", the A module refers to "a.lIlsp", etc.
The : FASLOAD clause for NuIB says that ".I isp" is a standard library which must be loaded.
This defnition doesn't specify when it might. be recompiled; presumably that is handled by some
other agency.
The : COMP ILE -LOAD clause for MACROS says that "mi 1 I isp" is part of the system and must
bc recompiled if changed, but it has no particular preconditions to be satisfied prior to compilation
or loading.
The :COMPILE -LOAD- INIT clauses for A and B specilf, various kinds of dependency information.
Both Must be recompiled not only if they themselves change, but also if MACROS changes. Before
compiling A, one must first load MACROS: before loading A, one must first load MLIl. Before
compiling B, one must first load MACROS: before loading B, one must first load ML lB and A.
Although names like :COMPILE -LOAD may look like function names, they are not. Theiy
simply declare that compilation and/or loading may need to occur under certain circumstances.
DE FSYSTEM notatitn, unlike that of MAKE, is declarative rather than procedural. Because of
this, MAKE-SYSTEM can perform more than one kind of opera tion (for each OEFSYSTEM form),
where MAKE could only perform one (for each make f ie). For example, given certain arguments,
MAKE-SYSTEM will compile a syhtem. Given dillicrent, arguments, it will simply load an already-
compiled version of the system.
On the other hand, die set of operations that MAKE-SYSTEM will perform is pre-deflined and not
extensible. 'Ibis means that if sonicone wanted to add a new utility (e.g.. for hardcopyitig sources)
there Would be no way to do it because there is no user-advertised mechanism for asking for a
list of a system's source files. 'Ihei information is present and is used internally by various systemt
utilities, but is not adverised to users as part of the standard abstraction.

31n Lisp Machine Lisp, symbols prceded by ii colon are"keywords"iiterned in a cainonk:,l "keyword
%TVpackag." fly .pecial (levree. keywords are sell* quoting (Le.. houiid to tlienislves). H ence. :FOO and J00

evalulate to) the samec thing.: FOO.

Another gripe commonly heard aboujt DE FSYSTEN is that it was designed to handle hard case&,
but that fiv simpler tasks it is gencrally cumbersome and unpleasant to use.
Still anothtr problem. which contributes to thc overall fciins of clumnsiness is that there is no
transitivity or dependency information between PE FSYSTEM modules. Hlence, if DE FSYSTEN is
told that C. LI SP depends on 8. L IS P and that B. LI SP depends on A. L ISP. DE FSYST EN will
not infe~r that C. L I SP depends on A. L ISP. Technically, it would be incorrect to do otherwise
because it may be thc case that thc part of B. L ISP which depends on A. L ISP is not used by
C. LISP. However. the result of this decision on thc pant of thc DEFSYSTE1M designers is thai
large DE FSY ST EN forms tend to take on a pyramidal shape as later compile-load specifications ame
forced to specify an enormous number of dependencies explicitly :4

(defsystem KBE
(:name "Knowledge-Based-Edtor0)
(:short-name WKE")

(:module LET "KCBE: LISPM2; LET* :package KBE)
(:module LETS "KBE: LtLIB; LETS*)
(:module PP *KBE: LMLID; GPRIMT")
(:module BASE ("BASIC" "NOISE* *SETS* "CONDITIONS" "ENGLISH*

"SYSTEM-MAGIC* "FLAVOR-MACIC-))
(:module MACRO ("MACRO"))
(:module KVARS *KVARS")

(:fasload PP)
(:tasload LET)
(:fasload LETS)
(:contpile-load-init BASE (PP)

(rasload PP LET LETS)
(:fauload Pik))0

(:compile-load-Ilnit MACRO (PP)
(:tasload PP LET LETS BASE)
(:fasload BASE))

(:complle-load-init WVARS (PP MACRO)
(:rasload PP LET LETS BASE MACRO)
(:fasload BASE))

(:comple-Ioad-init KMAC (PP MACRO)
(:tasload PP LET LETS BASE M4ACRO KVARS)
(:tasload BASE KVARS))

(:couplle-load-init IMAC (PP MACRO KNAC)
(rasload PP LET LETS BASE MACRO KVARS KMAC)
(:rasload BASE KVARS KNAC))

(:couile-load-init MDCX (PP MACRO)
(:?asload PP LEI LETS BASE MACRO KVARS IMAC)
(:taaload BASE KVARS IMAC))

(:compile-load-init BEHAVE (PP1 MACRO IMAC)
(:rasload PP LET LETS SASE MACRO WVARS IMAC)
(:rasload BASE KVARS IMAC MIJOX))

(:complle-load-ilt KUTIL (P1 MACRO IMAC BEhIAVE)
(:rasioad PP lET iETS BASE MACRtO KVARS 11MAC BEHAVE)
(:ras load BASE KVARS IMAC MDCX BEIIAVE))

(:compile-load-Init MAGIC (PP MACRO IMAC UFIIAVE SIMPLE [D1 SOCIETY)
(:tasload PP ILI IFIS BASI' MACRO KVARS IMAC

BrIIAVI. KUTIL SIM1,lE 1.01 SOCIEIY SEMO ZMAGIC)
(:fasload BASF KVAHS IMAC OCIIAVE KUTIL EDl

SOCIETY SINDRD BRIDGE ZMAGIC))

'1s.~ exan.iupk is likcii dirccily rro~ni d real progiain '3sildevL'lopcd by the MIT I'rograiinmer's Apprenhiv
g~routp. Vhu full de'li ntkon is mutch longer. describing I lic relaitis c Iwii about 90 riles. grouping thent into
abo ut 50 Ic ,kiaI 111AX1tu1cs.

6I

BE FSYS1 EM is extensible. but in addition ito its other problems. much of the d~ata available to
extension writer-, is in the form of special variables which arc available wAhile its "transformations"
are happening. To illustrate this, we include an excerpt froI the L~isp Mtachine AIanuaI section
describing state variables which can bc used in writing OEFSYSTEM extensions:
SI:*SYSTEM-BEING-MADE* Variable

'I'hc internal data structure which represents the system being made.

SI *MAKE..SYSTEM.FORMSO.BE-.EVALED..BEFORES Variable
A list of forms which arc evaluated before the transformations are performed.

SI :MAKE-SYSTEM-FORMS-TO-BE-EVALEJ-AFTER* Variable
A list of Formns which are evaluated after the transformations are performed.

SI :MAKE-SYSTEM-FORMS-TO-BE-EVALED-FINALLY* Variable
A list of forms which are evaluted after the body of MAKE -SYSTEM has completed. T1his differs
from SI MK SSE-FRS-O0 EAE-FER in that thce forms are evaluated
outside the "compiler context," which sometimes makes a difference.

SI:*QUERY-TYPEO Variable
Controls how questions are asked. Its normal value is : NORMAL. :NOCONF I RM means no questions
will be asked and :SELECTIVE asks a question for each individual file.

(SI:DEFINE-MAKE-SYSTEM-SPECIAL-VARIABLE var val [defvar-pl) Special Form
Causes var to be bound to val, which is evalulated at MAKE -SYSTEMtime, during the.body of the

e211 call to HAKE -SYSTEM. Thbis allows you to define new variables similar to those listed above. [f
dcji'ar-p is specified as (or defaulted to) T. var is defined with DE FVAR. It is not given an initial
value. If defv'Ir is specified as NIL. var belongs to some other program and is not DE FVAR'ed
here.

Because information is procedurally embedded in this way, it mray not be explicit at arbitrary times.
Also, it imposes a lot of pre-defined mechanism for talking about systems which might not be
convenient or even relevant in certain situations.
'Iliese problems with DL FSYST EM's design make it difficult to develop tools which interface to
those provided with DEFSYSTEM. Trhe tet result is that the DEFSYSTEM formalism is far less
flexible than we might want it to be.

IV. Proposal

Both DEFSYSTEM and MAKE offecr interesting functionality, but that flunctionality is tightly bonded
to the accompanying syntax. Neither seeks to provide at theory oflhow to allow specification of a

* system without binding tie user to a particular syntax.
No mattcr what the nature of the speciication language, the kinds of high level operations to
be perll)r~led upon systorns is not going to vary. We will still wan, to cdit, comnpile, load, and

* hardcopy systems. Hene. ratlher than propose yet another system description language with a new.
improved notation, we will propose at 1rainework in which syntax and functionality arc permitted
to vary independently.
lin this section. wve review dhe details of thc piroposal, but its essence is the suggestion that associatedw with coety system there shoild be sorn object which responds appropriately ito a pre deied set
of opcrations which support ;ippropriate maintienance ol' thme system. Putt another way, we assert
that a key problemn in previous systeum inaimienance utilities is tlat they either were%: not object
oriented or did not use thevir (object oriented nature it) their best ad~antagc.

Any sort of generic operations facility (e.g.. that provided in T [Rees 841 or Act-I rlheriault
831) would sulRCC to implement this proposal. Wherever possible, we will use an abstract function-
calling syntax ffr presentation. In places which call for examples fron a particular language, we
will use Lisp Machine Lisp ror presentation purposes.

Basic Protocol

By studying operations that are typically performed upon files, we can make a list of the
common operations we might expect to be performed upon systems. One obvious choice is
the update operation, which includes compilation or translation from one languagc to another,
parser generation, etc. Another is instantiation, which includes the loading of files or the execution
of some kinds of setup code. Other useful operations might be editing. hardcopying. and archiving.
To support these operations, we define the following functions:

(SYSTEM:GENERATE-PLAN system operation) -# actions
Given the name of an abstract operation (such as :UPDATE. :INSTANTIATE, or :HARDCOPY),
returns a list of actions (abstract plan steps) which will accomplish the operation.

(SYSTEM:EXECUTE-PLAN system actions)
i-xccutes a list of actions (or plan steps), such as those returned from a SYSTEM: GENERATE -PLAN
request.

(SYSTEM:EXPLAIN-PLAN system actions)
Types out an explanation of what would be the effect of executing actions

(SYSTEM:SOURCE-FILES system) -+ files ,;
Returns a list of the source .files for the system.

To this basic set, we will add the following two functions. It might be argued that they are
superfluous in the presence of the above functions, but in practice having them will greatly
Phance the clarity of some code. By adding them to the standard protocol, we encourage a clearer
programming style and standardize on terms:

(SYSTEM:EXECUTE-ACTION system action)

Executes a given action (plan step).

(SYSTEM:EXPLAIN-ACTION system action)
Types out an explanation of what would be the effect of executing action.

For convenience, we'll also define that if the argumcnt given to EXPLAIN or EXECUTE is the name
of an operation rader than a set of steps, then the plan will be generated automatically. 'Ihis
allows us to say:

(SYSTEM:EXECUTE-PLAN system :UPDATE)
and (SYSTEM:EXPLAIN-PLAN system :UPDATE)

where formerly we would have had to say:

(SYSrEM:EXPLAIN-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATE))
and (SYStEM:EXECUTE-PLAN system (SYSTEM:GENERATE-PLAN system :UPDATE)).

l)efiing systems

LJnder our proposal. sys(ems are described tusing tic DEFINE-SYSTEM special fonn. It creates a
syem oblject an1d stores it globally ir use at a later time. It has die syntax:

(DEFINE-SYSTEM name type . options).

r" i y " v .S

,lhc exact nature of the oplions will vary depending on the type of the system. For some systems.
* it may just be a list of files. For others, it might be a more complex data structlure specifying

specific dependency information. This proposal is designed explicitly to avoid taking a stand on
, what goes in this portion of the system specification.

To support this kind of type-specific option processing, we need functions to digest a type-specific
Options list:
(SYSTEM:PROCESS-OPTIONS system options-Ist)

Processes an options-ist. such as the body of a DEFINE-SYSTEM form. This might, but need not
necessarily, be done by mapping SYSTEM: PROCESS-OPTION down the optunis-list.

(SYSTEM:PROCESS-OPTION system name . data)

Processes a single option with given niame and data. "fhc option name :NAME must be handled.
Handling of any other option is at the discretion of the particular system type.

Creating System Objects

The DEFINE-SYSTEM special form is supported by a normal function, called CREATE-SYSTEM,
which has the syntax:

(CREATE-SYSTEM name type options).

CREATE-SYSTEM returns an object representing the system, but does not store it in any global place.
Such an object is called an anonymous system. CREATE-SYSTEM (and hence DEFINE-SYSTEM)
works by creating an object of the designated system flavor and then calling appropriate functions
to set its name and process its options.

Extensibility

To be appropriately extensible, each implementation would have to define how these finctions
related to the generic operations facility provided by that language. For example, on the Lisp
Machine, the interface to flavors might look like:

(DEFUN SYSTEM:PROCESS-OPTIONS (SYSTEM OPTIONS-ALIST)
(SEND SYSTEM :PROCESS-OPTIONS OPTIONS-ALIST))

(DEFUN SYSTEM:PROCESS-OPTION (SYSTEM NAME &REST DATA)
(LEXPR-SEND SYSTEM :PROCESS-OPTION NAME DATA))

Exploiting Inheritance

I.anguages which" provide generic operations and facilities for type inheritance would probably offer
at least two pre-defined types.

A type called SYSTEM should be at the base. It should have n) properties other than identifying
the object as a system. I)csigners who wish to start over "from scratch" in designing new types
ol' systeins adhering to the protocol we propose would start with the SYSTEM type and work from
there.

Another type, which we shall call VANILLA-SYSTEM, might offer some very general funclionality
which might he of use to many kinds ofr systeins. Using whatever inheritance mechanism was
appropriate to (he language, implenmentors of inany new system types might be able to inherit from
this slightly les§ general type rather than starting from scratch and Building their system type from
type SYSTEM. Naturally. VANILLA-SYSTEM would inherit from SYSTEM.

In the lisp Machine, for exanmple, customitingcan frequently he done by mixing VANI LLA-SYSTEM
into the new Ilavor and adding or changig i tw methods. Nothing prevents the designer from
sta'liig front .ratch and imlplcnicnling all the inithods lrom 'scratch: bit this will typically involve
more work thn is nccssary.

9)

A typical system flavor might look like:
(DEFFLAVOR system-type (... Instance variables...)

(VANILLA-SYSTEM))

followed by dcfinitions of new or customized methods.

For example. on the Lisp Machine. the :PROCESS-OPTIONS method might be expected to be
defined by:

(DEFMETHOD (VANILLA-SYSTEM :PROCESS-OPTIONS) (OPTIONS)
(DOLIST (OPTION OPTIONS)

(SEND SELF :PROCESS-OPTION OPTION)))

'This is defined as part of VANILLA-SYSTEM to save everyone the trouble of writing that same
method. In fact, VANILLA-SYSTEM might even define : PROCESS-OPTION to use :CASE method
dispatch (so that handling each kind of option may be defined by a separate DEFMETHOD form).
If so, wc might expect to also find definitions such as these in VANILLA-FLAVOR:

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :FULL-NAME) (NAME)
(SETQ FULL-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :SHORT-NAME) (NAME)
(SETQ SHORT-NAME (STRING NAME)))

(DEFMETHOD (VANILLA-SYSTEM :CASE :PROCESS-OPTION :NAME) (NAME)
(IF (NOT SHORT-NAME) (SETQ SHORT-NAME (STRING NAME)))
(IF (NOT FULL-NAME) (SETO FULL-NAME (STRING NAME))))

(DEFMETHOD (VANILLA-SYSTEM :OTHERWISE :PROCESS-OPTION) (NAME &REST DATA)
(FERROR "Bad option: -S-%Data: -S" NAME (COPYLIST DATA)))

Presumably, systems inheriting from VANI LLA-SYSTEM would define additional : PROCESS-OPTION
methods for any specifications appropriate to them.

Modular Extensions

Given these basic facilities, it is easy to make modular extensions. The finction HARDCOPY-SYSTEM
discussed earlier could be written simply as:

(DEFUN HARDCOPY-SYSTEM (SYSTEM)
(MAPC #'HARDCOPY-FILE (SYSTEM:SOURCE-FILES SYSTEM)))

Likewise, a facility for saving a snapshot of a system's source files to another directory might be
written:

(DEFUN ARCHIVE-SYSTEM (SYSTEM ARCHIVE-DIRECTORY)
(DOLIST (FILE (SYSTEM:SOURCE-FILES SYSTEM))

(COPY-FILE FILE ARCHIVE-DIRECTORY)))

'I here's no reason the user should necessarily have to write things like this himself. In general, it's
nice to have system libraries that have this sort of thing pre-delined. ie important thing is that
if' they were not primitively provided, they would be no problem it) write as extensions because a
basic set of operations has been chosen which lends itself to modular extension.
Even the fancier options to DE FSYSTEM, such as the :SELECT IVE option, fall directly out of this
modtlari/alion. For example, the essence of the :SELECTIVE option is captured by:

(LET ((PL.AN (SYSTEM:GENERATE-PLAN system :UPDATE)))
(FORMAT T "-&To update -A:" system)
(DOLIST (Sri P PLAN)

(SYSTEM:EXPLAIN-ACTION system STFP))
(UNLESS (NOT (Y-OR-N-P' "Ready to go ahead? "))

(SYSTEM:EXLCUTE-PI.AN system PLAN)))

I0

-~ -~-, . .w~. *v~ -' -' 4 w "2X

Variations arc also simple. For example, per-step querying could be achieved by:
(DOLIST (STEP (SYSTEM:GENERATE-PLAN system :UPDATE))

(SYSTEM:EXPLAIN-ACTION system STEP)
(UNLESS (NOT (Y-OR-N-P "OK? -))

(SYSTEM:EXECUTE-ACTION system STEP)))

Systems with Slimple I)cpendencies
Until now, not much has been said about what kind of information should go into the options
portion of a DEFINE-SYSTEM form.
In the simplest case, all wc might want to specify is the set of files involved. So, for example, we
might imagine a kind of system called SIMPLE-SYSTEM in which the options section was just a
list of files, so that the system we earlier specified by:

(DEFINE-SYSTEM-SOURCES IMYSYS
"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP")

would now be specified by:
(DEFINE-SYSTEM MYSYS SIMPLE-SYSTEM

"MACROS.LISP" "UTILITIES.LISP" "MAIN.LISP").

Contrast the simplicity of this approach with the MAKE specification of:

(DEFINE-FOR-MAKE MYSYS
("main.bin" ("utilities.bin" "macros.bln" "maln.lisp")

Nj (LOAD-IF-NOT-LOADED "macros.bin")
(LOAD-IF-NOT-LOADED "utillties.bln")
(LOAD (COMPILE-FILE "maln.lisp")))

("utilities.bin" ("macros.bin" "utllities.lisp")
(LOAD-IF-NOT-LOADED "macros.bln")
(LOAD (COMPILE-FILE "utilltles.llsp")))

("macros.bin" ("macros.llsp")
(LOAD (COMPILE-FILE "macros.llsp"))))

or the DEFSYSTEM formn:
(DEFSYSTEM MYSYS

(:MODULE MACROS ("macros"))
(:MODULE UTIL ("utilities"))
(:MODULE MAIN ("main"))
(:COMPILE-LOAD MACROS)
(:COMPILE-LOAD-INIT UTIL (MACROS)

(:FASLOAD MACROS)
. (:ASLOAD MACROS))

(:COMPILE-LOAD-INIT MAIN (MACROS UTIL)
(:FASI.OAD MACROS UTIL)

A (:FASLOAD MACROS UTIL))).

'Thei system defined by this DEFINE-SYSTEM forni is a first-class object which can be inspected,
and manipulated by the abstraction ffiictions proposed in the last section.

6L, & AS &

Systems %ith Complex I)ependencics'

Consider now a system with a set or macros (in MACROS. LISP) that expand into calls to functions
in somc utility package (in MACRO-SUPPORT. LISP). It should be an abstraction violation for the
consumers of the macro package to have to know what support is necessary for the package to
run. Yet with DEFSYSTEM, the specification must be written:

(DEFSYSTEM MYSYS
(:MODULE MACROS ("macros"))
'(:MODULE MACRO-SUPPORT ("macro-support"))
(:MODULE FOO ("foo"))

(:COMPILE-LOAD MACRO-SUPPORT)
(:COMPILE-LOAD MACROS)
(:COMPILE-LOAD-INIT FOO (MACROS)

(:FASLOAD MACROS)
(:FASLOAD MACRO-SUPPORT))

A user interested in abstraction might object to having to specify FOO's dependency upon
MACRO-SUPPORT explicitly. Certainly users of DEFSYSTEM have complained that this lack of
abstraction makes very large systems very hard to specify and maintain using DEFSYSTEM.

Armed with our new DEF [NE-SYSTEM proposal, a new notation could be developed to handle
the situation. We might. fbr example, propose a notation where rather than say "FOO depends on
MACRO-SUPPORT" explicitly (as happens in DEFSYSTEM), we could say "Using MACROS causes a
need for MACRO-SUPPORT." Such a notation might look like:

(DEFINE-SYSTEM MYSYS MODULAR-SYSTEM
(:MODULE MACRO-SUPPORT ("macro-support"))
(:MODULE MACROS ("macros")
(:CAUSES
(NEEDS
(:INSTANTIATE MACRO-SUPPORT))))

(:MODULE FOO ("1oD")
(:NEEDS
(:UPDATE MACROS)))

'Io arguc lor or against some particular new notation is not the point of this paper. 111e reAl
point is that the proposed framework provides a means of introducing alternate notations in a way
that does not intcrferc with existing notations and tools. l-Fxisting tools can operate correctly upon
systcms creatcd with new notations such as this because it is the functional behavior of systems
which has been standardied. not the notation.

In Johbins 841, still anothcr notation (to accompany a tool called BUILD) is proposed for specifying
module dependency iul1"mation. Although the data abstractions proposed in this paper were not
designed with BUILD in mind, they seem appropriate to support it anyway. Had the proposed
framework already been iii elfect. it would probably have been considerably simpler flbr Robbins
to experiment with his new notation.

+12

